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LASER PROPAGATION TEMPORAL SPECTRA

I. INTRODUCTION

This is a technical report under Contract F30602-72-C-0305
titled "Investigation of Laser Propagation Phenomena". This effort
is aimed at providing theoretical support to the RADC Laser Propa-
gation Program in the areas of atmospheric propagation phenomena and
microturbulence statistics. The efforts in this report are in
support of the experimental program being conducted at RADC: The
immediate aim is to give a detailed derivation of the temporal
spectrum of phase difference fluctuations.

The work on temporal spectra is of interest because it provides
information on tiwe scales of phase and arrival angle useful to systems
designers, and further phase difference fluctuations are intimately
related to angle of arrival fluctuations for small apertures
[Zintsmaster, 1971].

More generally temporal spectral measurements provide a simple
method for manipulating experimental data to give a check on our knowledge
of the light-beam turbulence interaction. It is much easier to instru-
ment time-spectral measurements because data need be taken for only one
apparatus setting. The cerresponding spatial correlations or spatial
spectra require measurements with apparatus adjusted for many point
separations.

Temporal correlations and spectra are in themselves useful
quantities to compare with theoretical estimates to gain information
about atmospheric-turbulence parameters. In this context, they do not
suffer from aperture limitations, as do spatial measurements, because
readily available time lags are large enough to represent spatial
separations much Targer than those conveniently available. Thus they
provide a convenient optical means with which to examine outer-scale
effects, which are important in the Tow temporal frequency region of
the phase difference spectrun. Further we will show that the high
temporal frequency dependence of the phase difference spectrum is
easily related to the small separation dependence of the phase structure
function, thus allowing a convenient experimental check of Ds(p).

The calculation will be done in three steps. In the first step
the definition of time lagged phase difference spectra is written
in terms of the phase structure function using Taylor's frozen tur-
bulence hypothesis. The result is in terms of a multidimensional
integral in rectangular coordinate variables whose integrand includes
a generalized isotropic Von Karmen index spectrum. The second step
involves evaluating for large and small frequencies all of the indicated
integrations except the range integration to obtain the differential




} path contribution. The result is put in terms of convenient non- :
: dimensional variables. The third step is to perform the range inte-
t gration for large and small normalized nondimensional temporal frequencies

and thereby obtain limiting forms for the complete solution. These forms {

are tabulated f%r the generalized index of refraction spectrum and for
the usual «~11/3 high spat1?1 §requency dependence. The complete
solution is obtained for k~ /3 inertial subrange dependence by
numerical integration for several normalized separations of interest.

II. DERIVATION

The experimental situation is shown in Fig. 1, where a wind of t

Temm—
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Fig. 1. Diagram of the experimental measurement.

constant velocity V} is blowing. ' The spherically diverging beam is
centered on the z axis. The +x direction is defined so that

(1) Vo

where V is the magnitude of the transverse wind and V,;is the component
of the wind parallel to the propagation path. V, may be either a
positive or a negative quantity. The phase difference (¢2-¢7) of two
phase points separated by a distance p in an x-y plane is recorded

as a function of time. The vector distance 7 makes an arbitrary

angle & with the +x axis, thus enabling us to determine the Fourier
transform (F) of the time laaged phase difference

=Y x+ Wz,

(2) My (0st) =Fe(ay (poert)=ay (57,748)) (o (5got)=0 (5 t))>

for all relative orientations between the phase points and the |
transverse component cf the wind (Vx).

2




(3) (A-B)(-D) = 3 (A-D)%- (A-C)+ (B-C)°- (B-D)°]

in Eq. (2} te obtain
— — 2 _ _
(4) w(SS = ;‘F{<[¢2 (QzaT'.'t)"(b] (D] at)] ‘[¢2(02 aT+t)‘¢2(029t)]

+ [¢] (;] aT+t)'¢2 (0_2 st)]z'[‘h‘ (EJ_] aT+t)-¢‘] (;] at)]z} .

Each term in Eq. (4) may be evaluated in terms of a phase structure
function

DS (pi'pj'ati'tj)-

— — 2
(5) <(ologat)-s oyt ) S

A general expression for the wave structure function (Dy(p)) is
obtained by multiplying Hufnagel's (1964) expression for the square
of the index of refraction difference by the wave propagation constant
squared (kZ2). The results are

) L
= 7 2 ] n n - r
(6) DW(p) = 2k J dE I dn{Dn[px L’py L’E’] Dn[OaGas]}
0 0

where £ is the difference range coordinate,n is the average range
coordinate.

The phase structure function varies from equality to one-half
the wave structure function value as the range increases. Hence

(7) D (o) = {?;0} D, (0),

where {?‘g} indicates that the numerical coefficient is between 0.5 and

1.0. Alternatively Eqs. (6) and (7) are derived from the spectral
expansion solutions for the wave and phase structure functions in
Appendix A.

Using Taylor's frozen turbulence hypothesis

(8) Dn(p.i'pjst.i'tj) = Dn(p.i’pj'v-r(t.i'tj))-



- Substituting Egs. (5), (6), (7) and (8) into Eq. (4) yields
:

w L
0.5L 2§
(9) e () = F [{1.0} ‘ l dgl dr

N m il 0 o_y- N
D (Tox Veaoys&V,t) + Dy (-fp, -V, L

- 2Dn (-Vr ,O,E'VZT)]

where we assume that the turbulence is stationary so that Wss (w) is not

a function of time origin (t). Equation (9) may be written using the
explicit Fourier transform relationship

y’g-VZT)

(o]

10) W)= [ g p (o) e

-0

and in terms of the index of refraction spectrum

2] [o<] 2]

(11) Dn(X,Y,Z) = 2 J dKX [ de J dKZ (]‘COS(KXX+KyY+K‘ZZ)

- 00 -0 =00

The result is

© L o © [+ [+
_1fos L2 ¢
(12) st(m) = 7‘“.0} k J dr fdn J dg J dK‘X f de J d|<z
-0 0 - 0O - O -~ 00 - 00

Cz( )°£0)(Kx y**z

n n
. Eexp {j(KXRX+KyRy+KZ€'E+T)JL -exp {'j(KxRX+KyRy+KZ€'€-'E)}

- \ ‘
-exp {J(-KRX-KyRy+KZE-s+T)} -exp {-j(-KRx-KyRy+KZ£-s T)f
) R ' S
+2e xp {j(KZE-c T)j‘ +2exp {-J (r:zg-s T)}
l
4 |
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ﬁ"———-—-r—'——"'_' T —

where the cosine terms have been put in termms of exponentials and

? where

Rx = p% coso is the range dependent x component of
ray separation

R = p—Esine is the range dependent y component of
i T M ray separation
|

Sk Ve Vot .
€ KXV KZVZ w

Equation (12) is the complete expression for the time-delayed
phase difference spectrum and hence concludes the first step.

We now perform each of the indicated integrations except that
for the average range coordinate n, so as to obtain the differential
path contribution to Wgq(w). The ¢ integration is easily performed
resulting in six delta functions involving «; in the remaining integrand.
The «, integration is performed with the result

1 o L -] o

| (13) W () = {?8} W[ e o [ dey | o,

-0 -0 -0

2 (0) , - . +
qu)n, (KX,Ky,O)Lexp{J(KXRX+KyRy-ng)}

. - . +
-e Xp'l-J (KXRX+|CyRy-EXT)}-eXp{J (-KXRX-KyRy-EXT )}

-exp {-j (-KXRX-KyRy-e;T)}>+2€Xp{-j€;'r}
+2ex r+' E }:'
% Pl Je, T

X = V—
€

Equation (13) shows that only the transverse wind velocity (\I) con-
tributes to the temporal spectrum, which agrees with Tatars.k1's .
qualitative analysis. The relatively small end effects, which arrise




when the longitudinal wind (V;) moves turbulence into and out of the
beam at the transmitter and receiver, are insignificant for phase
point separation much less than the path length.

The above result is a direct consequence of the often used
approximation of extending the £(=2p-27) integration limits to %= in
the original derivation of Dg(o).

The t and «y integrations are done in a similar manner with
the result that

L
(14) U (w) = sﬁ’:gjnzkzﬂ Jdn J dv
0

Cz (n)q’r(]O)((\‘l—)'aK 50)

n
1-lcos{}9R e p L] os{ER +c R
2 Vix 'y yf 2°051V"x yy
where ¢é0) js even in each of its arguments.

Equation (14) may be put into a convenient form by defining
dimensionless variables

(15a) Q 39- = normalized frequency,

(15b) Rln,v) = Eivn = normalized separation

(15¢) 82 (n,v) = 0+(?i2%_%)2) = 1 +(R2 A V)) = normalized outer
ukoln q scale.

(15d) u = E-= normalized range.

The v dependence of the constant B(v) is described later in Eq. (17c¢).
In terms of the new variables




- o
(16) W, =16 ?:gjnzkzLV -1 {du cﬁ(u)o(u,\)

«[1- %—cos([-cose + x3sing Jou)

Cr— 8

—

- i-cos([cose + x8sineJau)] ¢§0)(§3§6K,0),

K0
where « = 5%— and the eveness of the « integration has been used to

change the integration range. Equation (16) is quite general because
neither the functional dependence of Cﬁ(u) wgere u is the normalized
averaje range coordinate nor the form of ¢A0 (zx,zy,zz) has been specified.

In order to detemmine the differential path contribution, we now
define a generalized index of refraction spectrum

v+3
.r\ 2 -—2——
(17a) (brfo) = A(v) [;(Lo(vn ) + Ki + Kf] % Ki]
0

where Ly(n) is the range dependent outer-scale, and

‘ -
A7) AW) = |8s r(1-y) sin[(1-v) gﬂ Tevsz
A(1) = 1/ (2+2)

1

)"
(17¢) B(v) = 2!V | . l
r(%2)

Equation (17a) is a generalized Von Karmen index spectrum with a high
spatial frequency dependence of

L ]

]




Tie generally used value of v is 5 for which A%) = 0.033005 and
B(5) = 1.0710.

The parameters A(v) and B(v) are defined so that i
Cﬁ r’ re<ly

Vv
LO r>> LO

Equations (17b) and (17c) are derived from Eq. (17a) and the limiting
forms (Eq. (18)) in Appendix B.

We now substitute Eq. (17a) into Eq. (16) and after rearranging
terms obtain

w (s2)(
(19) V+S)

5 2l V2 2 vl
8{; of ™ / ( v+3)) Alv)k"L v+ {
...2.._ i
oy ! |

- % (v+3) Q'(V+2) J 9l C (u)g” ("+2)(u,v)

5 .

X de[1- %COS(['COSO+KB(U,V)Sin0]QU)

o—38

- %cos([cose+K8(u,v)sine]nu)]

-(21§
2 (
2) .

x (1+¢




When |(xcoso+gsine)au| << 1 Eq. (19) becomes

(Q)( \)+2 1 2
0 (wz) [f v+3J ™ Jeucd w0 g

vt3

1 -(=5>)
f dK[cosze+K232(u,v)sinze][1+K2] 2
0

The « integration is easily performed giving

W
(21a) ‘Ssi__
\)

)Y
p
5/2( 2 ) AR 0
"2‘

and for a horizontal path

Mg (@) () (53

(21b) 8 = (o24+R?) 2

2 2 72 PR S
x [2°cos“o+(2—")sin“s] fd %

0
and

=
w©
)
<
+
N
)
<

(21c) gr5/2 L ?13)) A(2/3) = 4.384.

— iy




At e ey

When |(tcoso+gsing)eu} << 1 Eq. (19) becomes

! \)+2 1
(20) ‘SSM ) li/_ ) 0™ [auc s "2 (u,0)
v+]

8{]. 5/2(

c -(=>)
f d.<[c0529+;<232(u,v)s1'n29][1+.<2] 2 .
0

The « integration is easily performed giving

i
l
l
l
|
|
!
f
I
i
|
{
I
i

V 1
w __
(21a) e =g fdu!}os e+—(—— sin ﬂ
5/2( 2 A(v va+1 0
T
2 (u)p(u,v) (V42) 32,
n u B U,v 6 3
and for a horizontal path
V \)+2
W (2) () -(~-)
p _ 12,52 2
(21b) v+2 = (2%+R%)
[o 51 5/2(" A LoVt 2
U 0 \)+3
2 2 92+R2 2 ] 3u2
x [2°cos e+(—;—)s1‘n 6] Jdu +
0 :
and

i

(21¢) gr%/2 %ﬁ”&g) A(2/3) = 4.384. i

w0
N R e T i o e




: Thus, there is a quadratic variation (along with any C% or
| t(u,v) variation) of the differential path contribution to Wsg(2) with
, range when @ is small.

When |(cose*g(u,v)sine)au| >> 1 the cosine temms oscillate rapidly
and we replace them by their average value (0). The phase difference
speccrum is

v 1
(22a) WG?ifgigq ) fducﬁ(u)s 42) (y,0)
5/2 (P o 2, W 0
) A(v)k°L
{] 0} \r(3§§)>

and for a horizontal path

V vi2 1
() (=) -{5-)
(22b) 55v4 ‘ = (ofr?) 2 J du
0.5] 5727 2 o+ 2 0
2 )

Equations (22) show that for large ug, the on]y variation in the dif-
ferential path contribution is due to C or g(u,v). Figure 2 shows
the limiting forms and the break point qocat1on when the path is
horizontal. A typical differential path contribution curve would
smoothly pass from the low frequency form to the high frequency form
and then oscillate with rapidly decreasing amplitude about the high
frequency (constant) amplitude. This completes the second step.

The third step is to integrate Eqs. (21b) and (22b) to obtain ‘
the final equations. The resultant equations are tabulated in Table
1, for the generalized index spectrum and in more detail in Tables 2,
3 and 4 for the usual case of v=2/3. In each of the four tables the
spectral amplitude has been multiplied by 2 and the range of w halved to
give O<w<e(one sided Jpectrum) In order to get the complete horizontal
path solution for Wsg (w), ghange the order of integration in Eq.
(;9) and, assuming constant C§ and Ly, perform the u integration to (
obtain

10
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TABLE I

The limiting forms of the one sided phase difference spectrum
for any relative orientation (8) of phase points and wind
velocity (V), and for a Von Karmen refractive index spectrum
having an index structure function D =& CarY when r << Lg.

2 - 1/v
(=2)
o 2rfo g Bl B(v) = |27V —2, O<v<2
v L vte
0 \—é—)
_8n r{1-v)cos (vy) 0<|v-1]<1
-1 v{vtl 2 '
A (v) =
21r2 v=]
3 cose+(92+R2)1/zsine|<< /6

v
W._(e)(=) Y
o 2 - Lty (272 [Ezzcosze+ 248 1n2%
(=)
1.0 vt3
r(—z—-)

| +ocos +(92+R2)]/251ne| >> Vb

8s

r(¥32) e
115/2 ——-—3—3_ )A(\))kszv 1
r ()

v
W (Q)(;) i} (92+R2)'(V+2)/2

0.5
16{1.0}

12
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TABLE II

The one sided phase difference spectrum limiting forms
for any orientation of phasc points and wind velocity

Q= ggfﬁ : R = 1:%112 v =2/3
0

| £acos +(92+R2)]/251ne| << /&

Wy (2) () _

0.5],2, 2 5/3 6
8.77{]_Q}k L ¢
. g8/3 r-ngosze + RZSané], VR .

— 2 .2
- 9'2/3 cog 6 . 512 {] , QB

S

| 20cos +(92+R2)]/25ine| >> /B

. (c2erl)"H3

= R'8/3

. 873

13

L ()3 [?Zcosze . (szRz)sinzé]

]

R T T
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TABLE II1

| Phase difference spectrum limiting form when the wing
| direction is parallel to the line connecting the phase

points
) Q= g%f& R = l;%ll& 8= 0°, .w=2/3
0
R << /6
3 \
wsg(:)%) 55/3 %R-SN o’ R.>>.0
8.77 ]:0}k L %
L2 Fon s R
= &'2—8/3 Q >> »/6.
R >> /6
. %—R-8/3 Q2 63/'|4R4/7 > 0
N 9-8/3 Q > 63/14R4/7

14




TABLE TV

Phase difference spectrum Timiting forms when the wind
direction is perpendicular to the line connecting the

phase point

afo 2 107
v ° )

\
.H?S}?{SQX, — =) gp-2/3
8.77{?'8 KoL 2,23 §

15

o = 90° ,

Q

v=2/3

R

>>

>> Q

>>

SN




corolll ‘ (vi2y ]
(23) _— w{iﬁl{&Ll__._-.“,. Iy ﬂ,?_)| »)‘(“*3)
A wnvidy ) | 2 i3y
8 ?'8}-—6%3—-n5/2A(v)k Lo"*lc L 2
()

( _ 1 sin[{-coso+3singia]
X de E 2 {- coso+xgsingln
0

vt3
_ 1 sin[{cosetxasinoin] [1+ 2]'('7_)
2 {coso+xBsinoin K

The integrand in Eq. (23) contains the spatial frequency filter
functions and the normmalized index of refraction spectrum. Figure 3
shows the filter functions for a particular normalized separation (R)
and normalized frequency (s:), and three orientation angles {0). The
normalized index spectrum is also presented. For 0° and 90° the two
sinx/x terms combine to yield a single term. The 0" case has a
constant amplitude dependent only on w. The 90° case filter function
is a sinc function, which discriminates against the low index of
refraction spatial frequencies. The general 0 case filter function
is represented by 6=15° which has two 1/2 amplitude sinc functions
that are displaced from the origin.

The integral in Eq. (23) is readily found using numerical
integration. The zero degree case is easily evaluated because the
filter factor is a constant. In this particular case

) vi2
(2)(-=) : - ()
e 0 - Sty
0.5 "V2 ) 572 2, vl 2
8{1 .0} ;—(—\’Z:,l—)- m A{v)k“Lp Cn
?

W
(24)

Figures 4-7 present the computer generated curves for R =10, 1.0,

0.1, 0.07; for 6 = 0°, 5°, 15°, 45°, 90° and v=2/3. Also included as

narrower lines in the figures are the asymptotic limits determined from

Table 2 (6 = 0°, 90° can also be obtained from Tables 3 and 4).

16
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FILTER FUNCTION AND INDEX
OF REFRACTION AMPLITUDE

.2 {—
s f,fﬂ“
\\90"
0.8
15°
7
0.4
INDEX OF
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»“//-SPEE:TRUM
. LN T

— T e

08 L2 16 20 =24 28 3.2
SPATIAL FREQUENCY K

Fig. 3. Examples of the spatial spectral filter functions for
various phase point orientations, and the normalized
index of refraction spectrum.
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Figure 4 is for the case

R = ]_'_IO-]JP_ = ]0
0

which represents a large phase point separation compared to the outer
scale. The low frequency offset between the computed curves and low
frequency asymptote is due to a higher order term (a constant) that is
not included in the low frequency asymptotic solution. An interesting
feature of this figure and following Figs. 5, 6 and 7 is_that the
normalized spectrum approaches a constant level for small normalized
frequencies except for the case when the wind is exactly parallel to
the phase point separation (6=0°). A second general result is that the
high frequency spectra is independent of orientation angle (p) and the
normalized separation (R), and hence it is also independent of the
outer-scale.

It is the mid frequency range that is characterized by the
normalized separation. For small

S

the mid frequencies which have a -2/3 slope extend from o=R to a=v6
for 8=0° and to =2 for 6=90°. Thus for small R, that is phase point
separations much less than the outer scale, the lTower mid frequency
preﬁk point determines R and hence L, since the phase point separation
is known.

We may also determine the exponent v in the phase structure
function (Eq. (18)) from phase difference spectrum data by taking the
ratio of parallel to perpendicular spectra amplitudes for the case of
small nommalized separatiors (R) and small or intermediate normalized
frequencies (@). From the equations for the limiting forms given in
Table 1, the ratio is

( 9.2

—5)V.
Q2 m R2

This ratio is accurate when @ << R << 1 or R << Q << 1 as can be seen
in Fig. 7 which shows both the 1imiting form results and the exact
results calculated for the particular value of v = 2/3. The in-
equality (R<<q<1) defines the more useful @ range because the ratio

2
o
([ 5]
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simplifies to itself. Therefore we have a convenient means of
testing the fundamental index of refraction structure function
equation which is widely used in turbulence theory (see Eg. (18)).

ITI. PHYSICAL PICTURE

In order to get a better physical picture of the factors in-
fluencing the phase difference temporal spectrum we re-examine several
of the previously developed equations.

First put the fundamental definition of the phase difference
spectrum given in Eq. (2) in terms of correlation functions,

(25) Wgs(m) = f'(ZBS(O,r) - BS (+p,1) - BS(-;),I)).

(

Hence Wyq (w) is the Fourier transform of a combination of four corre-
lation functions. The first two correlations which are combined into

one term are between the phase of one ray (see Fig. 1) and the phase

of the same ray at a time © later. This is equivalent to the same time
Correlation between two parallel rays separated by a distance vt arrising
from Taylor's frozen turbulence model. The last two tems are phase i
cross correlations. The cross correlations are between the phase of one
ray and the time delayed phase of the other ray. Again using Taylor's
frozen turbulence hypothesis the time delay correlation is equivalent to
a lateral displacement of the upward ray in a direction opposite to the
transverse wind direction. 1In one case the rays are moved further apart
so that they do not cross (0<z<L) and in the other case they approach
each other or cross at a point intermediate to the ray end points.

Now consider the differential path contribution to Wsg(w) from
the various terms of Eq. (25), as reflected on the corresponding terms
in Egs. (21b) and (22L). The first teym is proportional to range and
gives a constant differential path contribution while the last terms
have a pronounced range dependent variation due to the range dependent
separation between the two rays. Thus the range terms in the differential
path contribution to Wss increase with range and tend to approach a

constant toward the end of the path, thus qualitatively verifying the
range dependence of Eqs. (21b) and (22b).

In order to investigate the physical interaction between the
refractive index spatial spectrum and the experiment geometry con- .
sider the 3-dimensional phase grating model of the atmosphere where :
each combination of values of kxs<y and kz corresponds to a phase
grating with periodic phase variatior in the « direction. The
*z directed gratings influence each ray in exactly the same way so
they do not contribute to the phase difference and hence the zero for
<z in Eq. (19) (for example). Hence we consider the gratings which
have normals in the x-y plane. Figure 8 further shows two examples
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of grating orientations (with that is, gravings with .. directed
perpendicular and para]]e] to tﬁe separat1ons The gratings with
normals perpendicular to the separation do not influence the phase
difference while the parallel case has the maximum effect on the phase
difference. Hence the filter function of Eq. (19) has projected the
gratings with normal in x-y plane onto the separation vector.

it is the x component of the index spectrum which couples
spatial and the temporal frequency variation of the phase difference
as the wind moves past the phase points. Hence it is the wy = w/V
component that produces the frequency w in the temporal spectrum.
Furthermore, if a particular

[-X]

(n an integer) which has an associated gratong wavelength, n>,, that is
equal to the local x component of the ray separation (Ry), then the two
rays experience identical phase fluctuations and thus zero phase difference
at that point on the ray. Hence there is a zero in the differential path
contribution to the temporal spectrum at that point. Maxima on the
temporal spectrum occur when n is replaced by (n+1/2). This effect is
found in Eq. (14), upon expanding the cosine of the sum of two angles and
combining terms. These maxima and minima are in the plane wave spectra
because there is only one separation for all points on the rays. But

the maxima or minima at one point on the spherical wave path is added

to the contribution at other points where the filter function is

neither at a maxima or a minimum and hence the spherical wave spectra

is nearly free of local oscillations in amplitude.

As a final comparison we note that the Tow temporal frequency
spectrum approaches a constant amplitude because of w/V = «yx has selected
a spatial frequency in the saturation region of the index spectrum. The
exception is the 0° case where the filter function has a strong influence.
The high frequency temporal spectra goes as

- (v+2)

-
<|E
N

which results from projecting the K'(V+3) index spectrum in the o
direction. This completes the description of salient features of the
temporal spectrum in terms of physical concepts.
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IV.  CONCLUSIONS

The phase difference temporal spectrum has been evaluated for
arbitrary orientation of the phase observation points in a plane
perpendicular to the beam axis. The calculation has been based on
the method of spectral expansions and the Rytov approximation but the
equations have been rearranged to emphasize their relationship to the
physical picture using a phase screen model. The calculation uses a
deneralized index of refraction spectrum which has arbitrary power
law dependence in the inertial subrange and includes outer-scale
effects. This generalization allows one to directly test phase
difference spectra measurements to check the generally accepted .-11/3

dependence. The development also allows a direct evaluation of the
outer-scale,

For a (x) to the (v+3) power law inertial subrange spatial
frequency dependence, a (k) to the (v+2) power law high frequency
phase difference temporal spectrum is predicted, independent of
phase observation point orientation. The low frequency temporal
spectra are strongly orientation dependent. These features are
indicated in graphs of typical cases.
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APPENDIX A

In this appendix we obtain the phase structure function in terms
of spatial coordinate integrations from the often used spectral ex-
pansion results.

We start the calculation by comparing the spherical wave phase
structure function (Carlson, 1969)

2 L
2
Wa) 0 (o) = 8P [ de D=9y eo)lc | dn o) (£]
0 0
o (L L=n KZ) »(0) N
4 2 n n
and the spherical wave, wave structure function
. L
(Alb) D, (o) = 8% J dx(]-Jo(Kp))K J dn € (n) (%)
0 0
(0) el
o (o)

where

k is the source wave number
p is the measurement separation
L is the propagation range

Cz(n) is the turbulence strength

o (<) is the turbulence spectrum
=12 2
and ¢ = Ke ¥ Ky

The phase structure function in Eq. (Ala) is identical to the
wave structure function in Eq. (Alb) except that the former has an
additional cosine squared termm in its integrand. For the case of
small separations (p) and long ranges (L) the cosine squared term
oscillates rapidiy during the significant part of the « integration
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and we can replace the cosine squared term by its average value (0.5).

When o is large and L is small, the cosine squared term remains essentially
constant during the significant part of the « integration and we may
replace it by its initial value (1.0). Other values of p and L result

in an intermediate effective contribution of the cosine squared term
to the value of Dg(p), hence

wza) o) = {05 0,0,

Using Egs. (A1b) and (A2a), and setting «' = « —rL]-yie'lds

L w
(A2b) Ds(p) = 8k21r2 {.‘OO} J dn Cﬁ(n) j de' &'
0 0

(1-9532) 4] .

In all subsequent equations, drop the prime.
of the spatial frequency in the X-Y plane.
dependence of the spatial frequency

k is the magnitude
We regain the orientation
by using the identity

2
(A3) %;— f d¢(1-cos(ﬂfﬁ-cos¢)) = 1—Jo(ﬂfﬂ)
0

where ¢ is the angle between « and p in the X-Y plane.

Substituting
Eq. (A3) into Eq. (A2) and changing

to rectangular coordinates yields

L ® ®
0. 2 2 {

-0 -0

(0) |
¢ (Kx,vcy,O)(l-cos {% (prx'hcypy)}) .

The relationship between the three dimensional index of refraction ‘
spectrum and the two dimensional spectrum is

i
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w

), -1 : Y de
(AS) ‘l'n (Kxa’yao) - o F(kxaKy:I"-l) d'-:

-0

and the relationship between the two dimensional index of refraction
spectrum and the index of refraction structure function is

[+2] [+2]

) 2 [ ae | de, Flog,lel) 1mcos {100,000, )}

-0 -0

= Dn (EDX:E'py:IEI) = Dn(oaoglgl)-

Substituting Eqs. (A6) and (A5) into Eq. (A4) yields the required
result,

L
(A7) D, (») ={?;3} ST jdn(nn@px,gpy,g) - . (0,0,¢) |
0

where we drop the magnitude sign since we require that Dh be @ven in
each of its three arguments.
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APPENDIX B

We will now derive the constants in a generalized isotropic
Von Karmen index spectrum such that the corresponding index structure

function is

. )
J Cn r r << L0
(B1) Dn(r) = L
2 .,V
Cn L0 r>> Lo

where C% is the turbulence strength, and L, is the outer scale.

The inclusion of the parameter v allows the experimentalist to
test the widely used 2/3 power (v=2/3) variation of Dy with separation (r).

A general expression for the three dimensional isotropic index of
refraction spectrum is

Av) €2

(B(v)/L )2n+ Ké 2%§
0

where the constants A(v) and B(v) are to be evaluated. The exponent
has been chosen such that

(B2) ¢, () =

w0 0

B) =2 [ ][ (-cos@) o) b

o= 00 == QO == 00

The general inverse transform relationship (Tatarski 1961) for iso-
tropic turbulence is

(=]

(84) D (r) = & J (1 ; ﬂgfﬁ) ;n(K) L.
0

Substitute Eq. (B2) into Eq. (B4) to obtain
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Then change variables

(36) w = kr
and obtain
[oe] . 2
_ 2 v Sinw w_ dw
(B7) Dn(r) = 81 A(v) Cn r j (1 " ) 73
0

When r/L, << 1 we drop the Br/L, term as being small in comparison to :
w during the significant part of the integration, and using Eq. (B1)

obtain
& . -1
f (1 - ___Slnw ) w_(vﬂ) duJ . \
0

The integration is put into a more tractable form by noting i

(38) A(\)) =|E31r
that

w

o . l
_ sinw w-(v+1) .
(B9) i (1 -———-—) d

o 1 a
de f da f db sin{bw) w ¥ . '
0 0 0

Equation (B9) is easily evaluated when v = 1, the result being =/4.
When v#1, interchange integration limits and using

32 |




(810) J sin(w) o ¥ dy = I‘(]—v)sinB]-\») 2}

to obtain A(v) when 0 < [v-1| < 1. The final resuit for A(v) is

=

(R11) Alv) = G%%ITT t(1-v)sin(1-v) %J 0<v<l
1 <v<?2
:1——2- \)=]

2n

When U = «/B is substituted into Eq. (5) the result is

(812) 0 (r) = 81C2A(v) (E{BJJ

0
w sin UEE)
N T = ( Lo uzdu
(uB] | ndbe
0

When rB/Ly >> 1 we may neglect the sine term and easily integrate to

obtai(n e)m expression involving the remaining constant B(v). Using
Eq. (Bl

(B13) B(v) = [4r B(3/2, v/2) A(v)]’ .

Upon substituting Eq. (B11) into Eq. (B13) we obtain the final
expression for B(v).

1

2-vy | v

(814) B(v) = [2{1-V) -If—§?2—
I ())_2__)

) The complete expression for the phase structure function
is

88
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’ (%)
(B15) Dn(r) = an; (1 - 1(v/2)2 (—L—o-
Y‘va}
Kur2 ( =

where we have used Tatarski's (1961) transform pair.

]
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